1. Introduction

C95400 aluminum bronze is a widely used copper-based alloy valued for its excellent combination of strength, wear resistance, and moderate corrosion resistance in industrial applications. This comprehensive analysis examines C95400 alongside its potential equivalent alternatives, providing procurement specialists, engineers, and materials selection professionals with detailed comparisons of chemical composition, mechanical properties, manufacturing considerations, and cost-performance ratios. This guide aims to facilitate informed decision-making when sourcing materials for applications in marine, industrial equipment, valve components, and general engineering sectors.

2. C95400 Aluminum Bronze: Baseline Specifications

Table 1: Chemical Composition of C95400 Aluminum Bronze (%)

AlAvecFePbMnNiEtZn
10.0-11.5Rem.2.5-4.500,05 maximum00,5 maximum1,5 maximum00,5 maximum0.8 max
11.0*83.0*4.0*0.3*1.0*0.2*0.5*

*Nominal values

Table 2: Mechanical Properties of C95400 Aluminum Bronze

PropriétéValeurUnité
Résistance à la traction585-690MPa
Limite d'élasticité240-310MPa
Élongation12-20%
Dureté Brinell150-190HB
Densité7h45g/cm³
Propriétés mécaniques de l'acier à outils AISI HSS M2110GPa
Conductivité thermique50W/m·K
Coefficient de dilatation thermique16.4µm/m·K
Conductivité électrique12% IACS

3. Direct Equivalent Alternatives to C95400

3.1 International Standard Equivalents

Table 3: International Standards Equivalents for C95400

PaysStandardLa désignationEquivalence Level
Etats-UnisASTHMEÉtats-Unis C95400Reference
L'Europe AUCuAl11Fe4Haut
AllemagneDECuAl10Fe3Moyen-élevé
Royaume-UniBSAB2Haut
JaponJISCAC406Moyen-élevé
ChineFRZCuAl10Fe3Haut
RussieGOSTBrAZh 9-4Moyen
InternationalISOCuAl10Fe3Moyen-élevé

3.2 Chemical Composition Comparison

Table 4: Chemical Composition Comparison of C95400 and Its Direct Equivalents (%)

AlliageStandardAlAvecFePbMnNiEtLes autres
C95400ASTHME10.0-11.5Rem.2.5-4.500,05 maximum00,5 maximum1,5 maximum00,5 maximumZn≤0.8
CuAl11Fe4AU10.0-12.0Rem.3.0-5.00.02 maximum2,0 maximum1,0 maximum0.6 maxZn≤0.5
AB2BS10.0-11.5Rem.3.0-5.000,01 maximum1,5 maximum1,5 maximum0.4 maximumZn≤0.5
CAC406JIS9.0-11.0Rem.2.0-4.000,05 maximum1,5 maximum1,0 maximum00,5 maximumZn≤1.0
ZCuAl10Fe3FR9.0-11.0Rem.2.5-4.000,01 maximum00,5 maximum1,0 maximum0.3 maximumZn≤0.5

3.3 Mechanical Properties Comparison

Table 5: Mechanical Properties Comparison of C95400 and Direct Equivalents

AlliageRésistance à la traction (MPa)Limite d'élasticité (MPa)Allongement (%)Dureté (HB)
C95400 (ASTM)585-690240-31012-20150-190
CuAl11Fe4 (EN)600-700250-32010-18160-200
AB2 (BS)580-680240-30010-18150-190
CAC406 (JIS)550-650220-28012-22140-180
ZCuAl10Fe3 (GB)570-670230-30010-20145-185

4. Alternative Material Categories

4.1 Other Aluminum Bronze Grades

Table 6: Alternative Aluminum Bronze Grades Comparison

AlliageUNS#Al (%)Différences clésCoût relatifNote de performance
C95500C9550010.5-11.5Contains Ni, higher strength110%Haut
C95800C958008,5-9,5Higher Ni, better corrosion resistance120%Très haut
C95900C9590011.5-13.0Higher Al, increased hardness115%Haut
C95700C9570011.0-12.0Contains Ni, higher strength115%Haut
C63000C630009.0-11.0Higher Ni, superior strength130%Très haut

4.2 Other Bronze Alternatives

Table 7: Other Bronze Alternatives

AlliageUNS#Key CompositionPropriétés clésCost Ratio to C95400Meilleures applications
C90300C90300Cu-Sn-ZnGood bearing properties, lower strength90%Low-pressure applications
C86300C86300Cu-Mn-Zn-FeHigh strength, lower corrosion resistance85%Wear applications
C93200C93200Cu-Sn-Pb-ZnExcellent bearing properties, lower strength80%Roulements et bagues
C95200C95200Cu-Al-FeLower Al, improved ductility95%General components
C61300C61300Cu-Al-Fe-NiHigher strength, better corrosion125%Marine applications

4.3 Non-Copper Based Alternatives

Table 8: Non-Copper Based Alternative Materials

Material CategoryExample GradeComparative PerformanceCost RatioApplication Overlap
Ductile Iron65-45-12Higher strength, lower corrosion45%Moyen
Acier Carbone1045Higher strength, poor corrosion40%Low-Medium
Acier inoxydable316Moderate strength, better corrosion85%Moyen-élevé
Alliage d'aluminium7075-T6Lower weight, less wear resistant80%Faible
Nickel Aluminium BronzeC95800Higher corrosion resistance, more costly120%Haut

5. Cost-Performance Analysis

5.1 Relative Material Cost Index

Table 9: Relative Material Cost Index (C95400 = 100)

MatérielCoût des matières premièresCoût de traitementTotal Cost IndexCost Trend (2-Year)
C95400100100100Stable
CuAl11Fe4 (EN)95-10595-10595-105Stable
C95500105-115100-110103-113Slight increase
C95800115-125105-115110-120Increasing
C9030085-9590-10087-97Stable
316 SS80-9085-9582-92Volatile
Ductile Iron40-5045-5542-52Stable

5.2 Performance Rating by Application

Table 10: Performance Rating by Application (1-10 scale, 10=best)

MatérielMarine PumpsIndustrial ValvesGeneral BearingsWear ComponentsOverall Value Rating
C9540078887.8
CuAl11Fe478887.8
C9550088998.5
C9580099888.5
C9030067866.8
316 SS87666.8
Ductile Iron46765.8

6. Manufacturing Considerations

6.1 Processability Comparison

Table 11: Manufacturing Process Suitability (1-10 scale, 10=excellent)

MatérielMoulage au sableCoulée centrifugeMoulage d'investissementUsinabilitéSoudabilitéHeat Treatment Response
C95400987757
CuAl11Fe4987757
C95500887658
C95800887668
C90300988876
316 SS678587
Ductile Iron975658

6.2 Supply Chain Considerations

Table 12: Supply Chain Factors

MatérielGlobal AvailabilityLead Time (weeks)Supplier DiversityPrice StabilityRecyclabilité
C95400Haut3-5HautMoyen-élevéHaut
CuAl11Fe4Haut3-5HautMoyen-élevéHaut
C95500Moyen-élevé4-6Moyen-élevéMoyenHaut
C95800Moyen5-8MoyenMoyenHaut
C90300Très haut2-4Très hautHautHaut
316 SSTrès haut2-3Très hautMoyenTrès haut
Ductile IronTrès haut1-3Très hautHautTrès haut

7. Application-Specific Equivalence

Table 13: Recommended Alternatives by Application

ApplicationFirst ChoiceSecond ChoiceThird ChoiceKey Selection Factor
Marine pumpsC95800C95400316 SSmais il y a des limites
Industrial valvesC95400C95500Ductile IronPressure/temperature rating
Wear platesC95400C95900C86300Abrasion resistance
Propeller componentsC95800C95400316 SSSeawater corrosion
Bearings/bushingsC95400C93200C90300Load capacity/wear
General gearsC95400C95500C63000Strength/durability
Hydraulic componentsC95400C95500316 SSPressure handling
Mining equipmentC95400Ductile IronC86300Durability/cost

8. Selection Methodology for Equivalent Materials

Table 14: Decision Matrix for Material Selection

Selection FactorMasseC95400CuAl11Fe4C95500C95800316 SSDuctile Iron
Mechanical strength20%778876
mais il y a des limites20%778994
Résistance à l'usure15%889867
Cost-effectiveness15%887679
Usinabilitédix%776656
Castabilitédix%998869
Disponibilitédix%998799
Weighted Score100%7.707.707,857,757.156,75

9. Regional Market Availability and Pricing Trends

Table 15: Regional Availability and Price Variations

RégionC95400 AvailabilityPrice IndexLeading SuppliersImport Considerations
North AmericaTrès haut100Concast Metals, Advance BronzeDomestic supply robust
L'Europe Haut105-110KME, WielandEU material certifications
ChineTrès haut80-90Various foundriesQuality verification essential
JaponMoyen-élevé110-120Sambo, Mitsubishi MaterialsPremium quality, higher cost
IndeHaut85-95Multiple foundriesQuality consistency varies
Middle EastMoyen115-125Mostly importedImport duties, longer lead times
AustralieMoyen110-120Regional distributorsTransport costs significant

Table 16: Five-Year Price Trend Analysis (Index: 2020=100)

AnC95400C95500C95800316 SSCopper IndexAluminum Index
2020100100100100100100
2021120122125108125130
2022135138142116135145
2023128132138118130135
2024122125132112125130
2025*118122130110120125

*Projected values

10. Conclusion and Procurement Recommendations

C95400 aluminum bronze remains a versatile and widely used alloy for industrial applications requiring good strength, wear resistance, and moderate corrosion performance. The most direct equivalent alternatives are found in the European standard CuAl11Fe4 and the British standard AB2, which offer nearly identical performance characteristics with minimal cost variations.

For applications demanding superior corrosion resistance, particularly in seawater environments, C95800 nickel aluminum bronze offers significant performance advantages that may justify its 10-20% cost premium. For applications prioritizing wear resistance and strength, C95500 provides enhanced performance at a modest cost increase.

For procurement professionals, the following strategic recommendations apply:

  1. Match material selection precisely to application requirements to avoid over-specification and unnecessary costs
  2. Always request material certification documentation to verify composition and properties
  3. Consider total cost of ownership including maintenance cycles, not just initial purchase price
  4. For non-critical, moderate-wear applications in non-corrosive environments, evaluate ductile iron as a potential cost-saving alternative
  5. Maintain relationships with multiple suppliers to ensure competitive pricing and supply continuity
  6. Consider regional price variations when sourcing globally, particularly for large orders
  7. Monitor copper and aluminum commodity price trends as leading indicators of aluminum bronze price movements
  8. Develop standardized material equivalence tables for emergency substitutions

By carefully evaluating the equivalence factors presented in this analysis, procurement specialists and engineers can make informed decisions when selecting alternatives to C95400 aluminum bronze, balancing performance requirements with cost considerations and ensuring supply chain resilience.